Signaling C-type lectin receptors in antimycobacterial immunity
نویسندگان
چکیده
The mammalian innate immune system is composed of phagocytes such as macrophages and dendritic cells that serve as the first line of defense against microbial infections. These cells express various pattern recognition receptors (PRRs) that recognize specific pathogen-associated molecular patterns (PAMPs) on the surface of or inside microorganisms [1]. PRRs such as Toll-like receptors (TLRs), C-type lectin receptors (CLRs), and Nucleotide-binding Oligomerization Domain (NOD)-like receptors (NLRs) have been widely studied in antimicrobial immunity and homeostasis. These PRRs have also been implicated in antimycobacterial immunity, with CLRs recently receiving considerable attention. CLRs are a large family of proteins containing at least 1 carbohydrate-recognition domain (CRD) that in most cases binds a range of carbohydrate-based PAMPs, including trehalose 6,6’ dimycolate (TDM), lipoarabinomannan (LAM), lipomannan (LM), and phosphatidylinositol mannosides (PIMs) [2–4]. Interactions of CLRs with mycobacterial PAMPs induce intracellular signaling that triggers responses ranging from cytokine production to induction of adaptive immunity (Table 1). Here, we discuss signaling CLRs that recognize mycobacterial PAMPs and contribute to antimycobacterial immunity. We focus on the receptors that signal through the Spleen tyrosine kinase (Syk)/Caspase recruitment domain family member 9 (CARD9) pathway, including Dectin-1, Dectin-2, macrophage-inducible C-type lectin (Mincle), C-type lectin superfamily member 8 (Clecsf8) also called macrophage C-type lectin (MCL), and dendritic cell immunoactivating receptor (DCAR) (Fig 1).
منابع مشابه
C-type lectin receptors differentially induce th17 cells and vaccine immunity to the endemic mycosis of North America.
Vaccine immunity to the endemic mycoses of North America requires Th17 cells, but the pattern recognition receptors and signaling pathways that drive these protective responses have not been defined. We show that C-type lectin receptors exert divergent contributions to the development of antifungal Th17 cells and vaccine resistance against Blastomyces dermatitidis, Histoplasma capsulatum, and C...
متن کاملC-Type Lectin-Like Receptors of the Dectin-1 Cluster: Ligands and Signaling Pathways
Innate immunity is constructed around genetically encoded receptors that survey the intracellular and extracellular environments for signs of invading microorganisms. These receptors recognise the invader and through complex intracellular networks of molecular signaling, they destroy the threat whilst instructing effective adaptive immune responses. Many of these receptors, like the Toll-like r...
متن کاملSyk Kinase-Coupled C-type Lectin Receptors Engage Protein Kinase C-δ to Elicit Card9 Adaptor-Mediated Innate Immunity
C-type lectin receptors (CLRs) that couple with the kinase Syk are major pattern recognition receptors for the activation of innate immunity and host defense. CLRs recognize fungi and other forms of microbial or sterile danger, and they induce inflammatory responses through the adaptor protein Card9. The mechanisms relaying CLR proximal signals to the core Card9 module are unknown. Here we demo...
متن کاملTargeting C-Type Lectin Receptors for Cancer Immunity
C-type lectin receptors (CLRs) are a large family of soluble and trans-membrane pattern recognition receptors that are widely and primarily expressed on myeloid cells. CLRs are important for cell-cell communication and host defense against pathogens through the recognition of specific carbohydrate structures. Similar to a family of Toll-like receptors, CLRs signaling are involved in the various...
متن کاملThe Dectin-2 family of C-type lectin-like receptors: an update
Myeloid and non-myeloid cells express members of the C-type lectin-like receptor (CTLR) family, which mediate crucial cellular functions during immunity and homeostasis. Of relevance here is the dendritic cell-associated C-type lectin-2 (Dectin-2) family of CTLRs, which includes blood dendritic cell antigen 2 (BDCA-2), dendritic cell immunoactivating receptor (DCAR), dendritic cell immunorecept...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017